
How-To Create CRUD in HTML, JavaScript, 

and jQuery Using the Web API 

 

In my last article, I showed you how to manipulate data in an HTML table using only 
JavaScript and jQuery. There were no post-backs, so the data didn't go anywhere. In this 
article, you'll use the same HTML and jQuery, but add calls to a Web API to retrieve and 
modify product data. It isn't necessary to go back and read the previous article; this 
article presents all of the HTML and the calls to work client-side and add the server-side 
code as well. I'll be using Visual Studio and .NET to build the Web API service, but the 
client-side coding is generic and can call a Web API built in any language or platform. 
 
This article focuses on the four standard HTTP verbs that you use to work with the Web 
API: GET , POST , PUT , and DELETE . The GET  verb retrieves a list of data, or a single item 

of data. POST  sends new data to the server. The PUT  verb updates an existing row of 

data. DELETE  sends a request to remove a row of data. These verbs are used to map to 

a method you write in your Web API controller class. It's up to you to perform the 
retrieval of data, adding new rows, and updating and deleting of rows of data. Let's see 
how all of this works by building a project step-by-step. 

 

Create a Product Information Page 

If you're using Visual Studio, create a new ASP.NET Web Application project. Select 
“Empty” for the project template as you don't want any MVC, Web Forms, or even the 
Web API at this point. Add a new HTML page and name it Default.html . Open the 

Manage NuGet Packages dialog to add Bootstrap to your project. Bootstrap isn't 
necessary for the demo, but it does make your page look nicer. 
Open up Default.html  and drag the bootstrap.min.css  file, the jQuery-

1.9.1.min.js  file, and the bootstrap.min.js  files into the <head>  area of the page, as 

shown in the following code snippet. 
 

  
<!DOCTYPE html> 

<html xmlns="http://www.w3.org/1999/xhtml";> 

<head> 

http://jquery-1.9.1.min.js/
http://jquery-1.9.1.min.js/
http://bootstrap.min.js/
http://www.w3.org/1999/xhtml%22


  <title></title> 

  <link href="Content/bootstrap.min.css" rel="stylesheet" /> 

  <script src="Scripts/jquery-1.9.1.min.js"></script> 

  <script src="Scripts/bootstrap.min.js"></script> 

</head> 

<body> 

</body> 

</html> 

 
In the <body>  tag of this page, build the Web page that looks like Figure 1. Add a 

Bootstrap container, and a row and column within the <body>  element. 

http://jquery-1.9.1.min.js/
http://bootstrap.min.js/


 
Figure 1: Use a product information page to list, add, edit, and delete data. 



Add an <h2>  element with the words Paul's Training Company (or substitute your 

name). 
 

  
<body> 

  <div class="container"> 

    <div class="row"> 

      <div class="col-sm-6"> 

        <h2>Paul's Training Company</h2> 

      </div> 

    </div> 

  </div> 

</body> 

 
Immediately below the row you just added, create another row, and within that row, 
build the skeleton of an HTML table. Just build the header for the table, as you'll build 
the body dynamically in JavaScript using data retrieved from your Web API. To learn 
more about building a table dynamically in JavaScript, please read my last article 
entitled "CRUD in HTML, JavaScript, and jQuery". 
 

  
<div class="row"> 

  <div class="col-sm-6"> 

    <table id="productTable"  

           class="table table-bordered  

                  table-condensed table-striped"> 

      <thead> 

        <tr> 

          <th>Product Name</th> 

          <th>Introduction Date</th> 

          <th>URL</th> 

        </tr> 

      </thead> 

    </table> 

  </div> 

</div> 

 
In Figure 1, you can see an “Add Product” button immediately below the table. This 
button is used to clear the input fields of any previous data so that the user can add 
new product data. After entering data into the input fields, the user clicks on the “Add” 
button to send the data to the Web API. Build this “Add Product” button by adding 
another Bootstrap row and column below the previous row. In the onClick  event for 

this button, call a function named addClick . You haven't created this function yet, but 

you will later in this article. 
 

  
<div class="row"> 

  <div class="col-sm-6"> 

https://www.codemag.com/Article/1511031/CRUD-in-HTML-JavaScript-and-jQuery


    <button type="button"  

            id="addButton"  

            class="btn btn-primary"  

            onclick="addClick();">Add Product</button> 

  </div> 

</div> 

 
To create the product input area you see in Figure 1, the individual fields are placed 
inside a Bootstrap panel class. The panel classes are ideal to make the input area stand 
out on the screen separate from all other buttons and tables. A Bootstrap panel 
consists of the panel wrapper, a heading, a body, and a footer area made out 
of <div>  tags. 

 

  
<div class="row"> 

  <div class="col-sm-6"> 

    <div class="panel panel-primary"> 

      <div class="panel-heading"> 

        Product Information 

      </div> 

      <div class="panel-body"> 

      </div> 

      <div class="panel-footer"> 

      </div> 

   </div> 

  </div> 

</div> 

 
All label and input fields are placed within the “panel-body” <div>  tag. To achieve the 

input form look, use the Bootstrap <div class="form-group">  around the label and 

input fields. Use the “for” attribute on the <label>  and include class="form-

control"  on each of your input types to achieve the correct styling. 

 

  
<div class="form-group"> 

  <label for="productname">Product Name</label> 

  <input type="text" id="productname" class="form-control" /> 

</div> 

<div class="form-group"> 

  <label for="introdate">Introduction Date</label> 

  <input type="date" id="introdate" class="form-control" /> 

</div> 

<div class="form-group"> 

  <label for="url">URL</label> 

  <input type="url" id="url" class="form-control" /> 

</div> 

 
The final piece of the input form is the Add button that you place into the panel-
footer <div>  tag area. This input button's text changes based on whether or not you're 



doing an add or edit of the data in the input fields. The JavaScript code you write 
checks the text value of this button to determine whether to POST the data to the Web 
API or to PUT  the data. A POST  is used for adding data and the PUT is used to update 

data. Again, there's a function name in the onClick  event that you haven't written yet, 

but you will. 
 

  
<div class="row"> 

  <div class="col-xs-12"> 

    <button type="button"  

            id="updateButton"  

            class="btn btn-primary"  

            onclick="updateClick();"> 

      Add 

   </button> 

  </div> 

</div> 

 
If you run the Default.html  page now, it should look similar to Figure 1, except there 

will be no listing of product data. 
 

Add the Web API to Your Project 

Now that you have your HTML page built, it's time to add on the appropriate 
components within Visual Studio so you can build a Web API to retrieve and modify 
product data. In Visual Studio, this is easily accomplished using the Manage NuGet 
Packages dialog, as shown in Figure 2. Search for the “Microsoft ASP.NET Web API 2.2” 
package and click the Install button to add the appropriate components to your Web 
project. 



 
Figure 2: Use the Manage NuGet Packages screen to add the Web API to your project. 

 
To create an endpoint for your Web API, create a controller class. Create a new folder 
called \Controllers in your project. Right-click on the Controllers folder and select Add | 
Web API Controller Class (v2.1). Set the name of your new controller 
to ProductController . 

 
Next, you need to specify the routing for your Web API. Create a new folder 
called \App_Start in your project. Add a new class and name it WebApiConfig . Add 

a Using  statement at the top of this file to bring in the namespace System.Web.Http . 

Add a Register  method in your WebApiConfig  class. 

 

  
public static class WebApiConfig  

{ 

    public static void Register(HttpConfiguration config)  

    { 

        config.Routes.Clear(); 

        config.Routes.MapHttpRoute( 

            name: "DefaultApi",  

            routeTemplate: "api/{controller}/{id}",  

            defaults: new { id = RouteParameter.Optional }); 

    } 

} 



Clear the Routes collection in case there are any default routes created by .NET. The 
route, api/{controller}/{id} , that is specified in the MapHttpRoute  method is very 

standard for Web API projects. However, feel free to change this to whatever you want.  
 
For example, you could just use {controller}/{id}  if you don't want to have to 

specify api in front of all your calls. This is just a matter of preference. However, as 
most developers have an existing Web project that they're adding API calls to, it makes 
sense to have a different route for your API calls. This keeps them separate from the 
route of your Web pages, which is typically “views.” 
 
The last thing you need to do before you can start calling your Web API is to register 
this route so that your Web application running on your Web server will recognize any 
call made to your API. Right-click on your project and select Add | New Item� | Global 
Application Class. This adds a Global.asax  file to your project. At the top of the global 

application class, add the following using statement. 
 

  
using System.Web.Http; 

 
Within the Application_Start  event, add a call to the Register  method of 

the WebApiConfig  class that you created earlier. ASP.NET creates an instance of 

an HttpConfiguration  class and attaches it as a static property of 

the GlobalConfiguration  class. It is to this configuration object that you'll add to the 

routes you wish to support in your Web application. 

  
protected void Application_Start(object sender, EventArgs e)  

{ 

    WebApiConfig.Register(GlobalConfiguration.Configuration); 

} 

 

Create Controller and Mock Data 

You now have a Web page and all the plumbing for the Web API ready to go. Let's start 
building your first API call to return a list of product objects to display in the table on the 
HTML page. Create a class called Product  in your project and add the following 

properties. 

  
public class Product 

{ 

    public int ProductId { get; set; } 

    public string ProductName { get; set; } 

    public DateTime IntroductionDate { get; set; } 



    public string Url { get; set; } 

} 

 
Instead of worrying about any database stuff, you can just create some mock data to 
learn how to work with the Web API. Open the ProductController  class and add a 

private method to create mock data, as shown in Listing 1. 
 

Listing 1: Create some mock data for your Web API 

private List<Product> CreateMockData()  

{  

    List<Product> ret = new List<Product>();  

    ret.Add(new Product()  

    {  

        ProductId = 1,  

        ProductName = "Extending Bootstrap with CSS, JavaScript and  

jQuery",  

        IntroductionDate = Convert.ToDateTime("6/11/2015"),  

        Url = "http://bit.ly/1SNzc0i"  

    });  

     

    ret.Add(new Product()  

    {  

        ProductId = 2,  

        ProductName = "Build your own Bootstrap Business Application  

Template in MVC",  

        IntroductionDate = Convert.ToDateTime("1/29/2015"),  

        Url = "http://bit.ly/1I8ZqZg"  

    });  

     

    ret.Add(new Product()  



    {  

        ProductId = 3,  

        ProductName = "Building Mobile Web Sites Using Web Forms,  

Bootstrap, and HTML5",  

        IntroductionDate = Convert.ToDateTime("8/28/2014"),  

        Url = "http://bit.ly/1J2dcrj"  

    });  

     

    return ret;  

}  

Return Values from API Calls 

If you look at the ProductController , you'll see methods that look like Listing 2. The 

problem with these methods is that each one returns a different type of value or no 
value at all. This means that if you want to return HTTP status codes like 
a 200 , 201 , 404 , etc. you have to write extra code. If you want to return error messages 

back to the client, you have to change the return value on each of these. 
 

Listing 2: The default methods in the controller need to be modified. 

// GET api/<controller>  

public IEnumerable<string> Get()  

{  

    return new string[] { "value1", "value2" };  

}  

 

// GET api/<controller>/5  

public string Get(int id)  

{  

    return "value";  

}  



 

// POST api/<controller>  

public void Post([FromBody]string value)  

{  

}  

 

// PUT api/<controller>/5  

public void Put(int id, [FromBody]string value)  

{  

}  

 

// DELETE api/<controller>/5  

public void Delete(int id)  

{  

}  

 
Introduced in the Web API 2 is a new interface called IHttpActionResult . This interface 

is built into the ApiController  class (from which your ProductContoller  class inherits) 

and defines Helper methods to return the most common HTTP status codes such as 
a 202 , 201 , 400 , 404 , etc. The methods you'll use in this article are Ok , Created<T> , 

and NotFound . These methods return 200 , 201 , and 404  respectively.  

 
The Ok  and Created  methods allow you to pass data back so you can include things 

like collections of products or a new product object. 

 

Get (GET) All Products 

Let's start by modifying the GET  method to return all products created in the mock data 

collection. Locate the GET method that has no parameters in 
the ProductController  class, and modify the code to look like the following. 

  
[HttpGet()] 

public IHttpActionResult Get()  



{ 

    IHttpActionResult ret = null; 

    List<Product> list = new List<Product>(); 

    list = CreateMockData(); 

    ret = Ok(list); 

    return ret; 

} 

 
Modify the return value of the GET  method to use the new IHttpActionResult interface. 

Although it's not necessary, I like adding the attribute [HttpGet()]  in front of the 

method to be very explicit about which HTTP verb this method supports. Declare a 
variable named ret , of the type IHttpActionResult . Declare a variable named list , to 

hold a collection of product objects. Build the list of data by calling the CreateMockData 
method that you defined earlier. Set the ret  variable to the Ok  method built into 

the ApiController  class, passing in the list of product objects. The Ok  method does a 

couple of things; it sets the HTTP status code to 200 , and it includes the list of products 

in the HttpResponseMessage  sent back from this API call. 

 

Call the GET Method 

With the GET  method created to return a list of products, you can now call it from your 

HTML page. Open the Default.html page and add a <script>  tag at the bottom of the 

page just above the </body>  tag. You know that you have to create at least two 

functions right away because they were the ones you called from the buttons you 
defined in the HTML. Add these two function stubs now. 

  
<script> 

  // Handle click event on Update button 

  function updateClick() { 

  } 

  // Handle click event on Add button 

  function addClick() { 

  } 

</script> 

 
Add a new function called productList  to make the Ajax call to the GET  method that 

you created. 
 

  
function productList() { 

  // Call Web API to get a list of Product 

  $.ajax({ 

    url: '/api/Product/', 

    type: 'GET', 



    dataType: 'json', 

    success: function (products) { 

      productListSuccess(products); 

    }, 

    error: function (request, message, error) { 

      handleException(request, message, error); 

    } 

  }); 

} 

 
this Ajax call, there are two additional functions that you need to write. 
The productListSuccess  function processes the collection of products returned when 

you successfully retrieve the data. The handleException  function takes the error 

information and does something with it. The productListSuccess  function is very 

simple and uses the jQuery $.each()  iterator to loop over the collection of product 

objects. 
 

  
function productListSuccess(products) { 

  // Iterate over the collection of data 

  $.each(products, function (index, product) { 

    // Add a row to the Product table 

    productAddRow(product); 

  }); 

} 

 
The productAddRow  function called from within the iterator is responsible for building a 

new row to add to the HTML table. 
 

  
function productAddRow(product) { 

 // Check if <tbody> tag exists, add one if not 

  if ($("#productTable tbody").length == 0) { 

   $("#productTable").append("<tbody></tbody>"); 

  } 

  // Append row to <table> 

  $("#productTable tbody").append( 

    productBuildTableRow(product)); 

} 

 
Notice that you first check to ensure that the <tbody>  tag exists on the table. This 

ensures that any <tr>  elements you add go into the correct location in the DOM for the 

table. The function to build the actual <tr>  is in a function 

called productBuildTableRow . This is in a separate function because you'll use this later 

in this article to build a row for editing a row in a table. 
 



  
function productBuildTableRow(product) { 

  var ret = 

    "<tr>" + 

     "<td>" + product.ProductName + "</td>" + 

     "<td>" + product.IntroductionDate + "</td>" 

      + "<td>" + product.Url + "</td>" + 

    "</tr>"; 

  return ret; 

} 

 
The last function to add is handleException . If an error occurs, display the error 

message information in an alert dialog. You can figure out how you want to display error 
messages later, but for now, you only want to see the error details. 
 

  
function handleException(request, message, error) { 

  var msg = ""; 

  msg += "Code: " + request.status + "\n"; 

  msg += "Text: " + request.statusText + "\n"; 

  if (request.responseJSON != null) { 

    msg += "Message" + request.responseJSON.Message + "\n"; 

  } 

  alert(msg); 

} 

 
Call the productList  function after the Web page loads using the 

jQuery $(document).ready()  function. Add the following code within 

your <script>  tag. 

 

  
$(document).ready(function () { 

  productList(); 

}); 

 

Run the HTML page, and if you've done everything correctly, you should see your mock 
product data displayed in the HTML table. What's really neat about this is that you didn't 
have to use MVC, Web Forms, PHP, or any other Web development system. You simply 
use an HTML page to call a Web API service. 

Modify the GET Method 

The GET  method you wrote earlier assumes that you successfully retrieved a collection 

of data from your data store. However, when you retrieve data from a database table, 
you may have an empty table. In this case, you need to respond back to the front-end 



client that no data was found. In this case, the list variable would be an empty list. If no 
data is returned, you should send back a 404  status using the NotFound  method. 

Modify the GET  method to look like the following. 

 

  
[HttpGet()] 

public IHttpActionResult Get()  

{ 

    IHttpActionResult ret = null; 

    List<Product> list = new List<Product>(); 

    list = CreateMockData(); 

    if (list.Count > 0)  

    { 

        ret = Ok(list); 

    } 

    else  

    { 

        ret = NotFound(); 

    } 

    return ret; 

} 

 

Get a Single Product 

When you wish to edit a product, you call the Web API to retrieve a single product object 
to ensure that you have the latest data from the database, and then display that data in 
input fields to the user. The user then modifies that data and posts it back. You'll learn 
how update data later in this article, but for now, let's see how to get a single product 
into the HTML input fields. 

Open the ProductController  and locate the second Get  method, the one that accepts 

a single parameter named id . Modify that function to look like Listing 3. Because 

you're using mock data, go ahead and build the complete collection of products. Locate 
the product id using LINQ to search for the ID passed into the method. If the product is 
found, return an Ok  and pass the product object to the Ok  method. If the product is not 

found, return a NotFound . 

Listing 3: Get a single product 

[HttpGet()]  

public IHttpActionResult Get(int id)  

{  

    IHttpActionResult ret;  



    List<Product> list = new List<Product>();  

    Product prod = new Product();  

     

    list = CreateMockData();  

    prod = list.Find(p => p.ProductId == id);  

    if (prod == null)   

    {  

        ret = NotFound();  

    }  

    else   

    {  

        ret = Ok(prod);  

    }  

     

    return ret;  

}  

Add an Edit Button to Each Row of the Table 

Each row of data in the HTML table should have an edit button, as shown in Figure 1. 
The raw HTML of the button looks like the following, but of course you have to build this 
code dynamically so you can get the data-  attribute assigned to the correct product id 

in each row. 

  
<button class="btn btn-default"  

        onclick="productGet(this);"   

        type="button"   

        data-id="1"> 

  <span class="glyphicon glyphicon-edit"></span> 

</button> 

 
To add this button into each row, add a new <th>  element in the <thead>  of the table. 

 

  
<th>Edit</th> 



 
Modify the productAddRow function and insert the code below before the 
other <td>  elements. 

 

  
"<td>" + 

  "<button type='button' " + 

     "onclick='productGet(this);' " + 

     "class='btn btn-default' " + 

     "data-id='" + product.ProductId + "'>" + 

     "<span class='glyphicon glyphicon-edit' />" 

   + "</button>" + 

"</td>" + 

 
Within the <td> , build a button control. Add an onClick  to call a function 

named productGet . Pass in this  to the productGet  function so that you have a 

reference to the button itself. You're going to need the reference so you can retrieve the 
value of the product ID you stored into data-id  attribute. 

 

To simplify the code for this article, I concatenated the HTML values together with the 
data. You could also use a template library, such as Underscore or Handlebars, to 
separate the HTML markup from the data. 

 

Advertisement 

Make an Ajax Call to Get a Single Product 

In Listing 4, you can see the productGet function that you need to add to 
your <script>  on your HTML page. In this function, you retrieve the product ID from 

the data-id  attribute you stored in the edit button. This value needs to be passed to 

the Get  method in your controller and it needs to be kept around for when you submit 

the data back to update. The best way to do this is to create a hidden field in your HTML 
body. 

  
<input type="hidden" id="productid" value="0" /> 

Listing 4: Get the product ID and use Ajax to get a single product object  

function productGet(ctl) {  

    // Get product id from data- attribute  

    var id = $(ctl).data("id");  



     

    // Store product id in hidden field  

    $("#productid").val(id);  

     

    // Call Web API to get a list of Products  

    $.ajax({  

        url: "/api/Product/" + id,  

        type: 'GET',  

        dataType: 'json',  

        success: function (product) {  

            productToFields(product);  

             

            // Change Update Button Text  

            $("#updateButton").text("Update");  

        },  

        error: function (request, message, error) {  

            handleException(request, message, error);  

        }  

    });  

}  

 
You're now ready to call the Get(id)  method in your ProductController . Add the 

function productGet  within your <script>  tags, as shown in Listing 4. The Ajax call is 

very similar to the previous call you made, but the product ID is included on the URL line. 
This extra ID is what maps this call to the Get(id)  method in your controller. If the Get 

method succeeds in returning a product object, call a function 
named productAddToFields  and pass in the product object. Change the update button's 

text from “Add” to “Update.” This text value will be used later when you're ready to add 
or update data. 
 
The productToFields  function uses jQuery to set the value of each input field with the 

appropriate property of the product object retrieved from the API call. 



 

  
function productToFields(product) { 

    $("#productname").val(product.ProductName); 

    $("#introdate").val(product.IntroductionDate); 

    $("#url").val(product.Url); 

} 

 

Run this sample and ensure that you can retrieve a specific product from your API. 

Add (POST) a New Product 

You used the GET  verb to retrieve product data, so let's now learn to use the POST  verb 

to add a new product. In the ProductController  class, to call the Post  method. Modify 

the Post  method by adding an [HttpPost()]  attribute and changing the return value 

from void to IHttpActionResult . Change the parameter to the Post  method to accept 

a Product object. You don't need the [FromBody]  attribute, so go ahead and delete that. 

The [FromBody]  attribute is only needed for simple data types, such as string and int. 

  
[HttpPost()] 

public IHttpActionResult Post(Product product)  

{ 

    IHttpActionResult ret = null; 

    if (Add(product))  

    { 

        ret = Created<Product>(Request.RequestUri +  

                  product.ProductId.ToString(), product); 

    } 

    else 

    { 

        ret = NotFound(); 

    } 

    return ret; 

} 

The Add  method is a mock method to simulate adding a new product. This method 

calculates the next product ID for the new product and returns a Product  object back to 

the Web page with the new ID set in the ProductId  property. 

 

  
private bool Add(Product product)  

{ 

    int newId = 0; 

    List<Product> list = new List<Product>(); 

 

    list = CreateMockData(); 



     

    newId = list.Max(p => p.ProductId); 

    newId++;  

    product.ProductId = newId; 

    list.Add(product); 

 

    // TODO: Change to false to test NotFound() 

    return true; 

} 

Add a New Product in HTML 

With the Post  Web API method written, you can write the necessary JavaScript 

in Default.html  to call this method. Define a new JavaScript object 

called Product  with the following name/value pairs. 

 

  
var Product = { 

  ProductId: 0, 

  ProductName: "", 

  IntroductionDate: "", 

  Url: "" 

} 

 
Each of the names in this JavaScript object needs to be spelled exactly the same as the 
properties in the Product  class you created in C#. This allows the Web API engine to 

map the values from the JavaScript object into the corresponding properties in the C# 
object. 
 

Each of the names in this JavaScript object needs to be spelled exactly the same 
as the properties in the Product class you created in C#. 
 
The user fills in the blank fields on the screen, then click the Add button to call 
the updateClick  function. Modify this function to create a new Product  object and 

retrieve the values from each input field on the page and set the appropriate values in 
the Product  object. Call a function named productAdd  to submit this JavaScript object 

to the Post  method in your API. 

 

  
function updateClick() { 

  // Build product object from inputs 

  Product = new Object(); 

  Product.ProductName = $("#productname").val(); 

  Product.IntroductionDate = $("#introdate").val(); 

  Product.Url = $("#url").val(); 

  if ($("#updateButton").text().trim() == "Add") { 

    productAdd(Product); 

  } 



} 

 
The productAdd  function uses Ajax to call the Post method in the Web API. There are a 

couple of changes to this Ajax call compared to the GET  calls you made earlier. First, 

the type  property is set to POST . Second, you add the contentType  property to specify 

that you're passing JSON to the API. The last change adds a data  property where you 

take the JavaScript Product  object you created and serialize it using 

the JSON.stringify  method. 

 

  
function productAdd(product) { 

  $.ajax({ 

    url: "/api/Product", 

    type: 'POST', 

    contentType:  

       "application/json;charset=utf-8", 

    data: JSON.stringify(product), 

    success: function (product) { 

      productAddSuccess(product); 

    }, 

    error: function (request, message, error) { 

      handleException(request, message, error); 

    } 

  }); 

} 

Add a New Product to the HTML Table 

If the call to the Post  method is successful, a new product  object is returned from the 

Web API. In the success part of the Ajax call, pass this object to a function 
called productAddSuccess . Add the newly created product data to the HTML table by 

calling the productAddRow  function you created earlier. Finally, clear the input fields so 

that they're ready to add a new product. 

  
function productAddSuccess(product) { 

  productAddRow(product); 

  formClear(); 

} 

 
The formClear  function uses jQuery to clear each input field. You should also change 

the addClick  function to clear the fields when the user clicks on the Add button. 

 

  
function formClear() { 

  $("#productname").val(""); 

  $("#introdate").val(""); 

  $("#url").val(""); 



} 

function addClick() { 

  formClear(); 

} 

 

Update (PUT) a Product 

At some point, a user is going to want to change the information about a product. 
Earlier in this article, you added an Edit button to retrieve product data and display that 
data in the input fields. The function also changes the updateButton's text property 
to Update. When the user clicks on the Update button, take the data from the input 
fields and use the HTML verb PUT  to call the Put  method in your Web API. Modify 

the Put  method in your ProductController  to look like the following. 

 

  
[HttpPut()] 

public IHttpActionResult Put(int id, Product product)  

{ 

    IHttpActionResult ret = null; 

    if (Update(product))  

    { 

        ret = Ok(product); 

    } 

    else  

    { 

        ret = NotFound(); 

    } 

    return ret; 

} 

The call to the Update  method from the Put  method is a mock to simulate modifying 

data in a product table. To see the NotFound  returned from this method, change 

the true  value to a false  value in the Update  method shown below. 

 

  
private bool Update(Product product)  

{ 

    return true; 

} 

Edit and Submit the Product Data 

With your Put  method in place, it's now time to modify the updateClick()  function in 

your JavaScript. Locate the updateClick()  function and add an else condition to call a 

function named productUpdate . 



 

  
function updateClick() { 

    ... 

    ... 

    if ($("#updateButton").text().trim() == "Add") { 

        productAdd(Product); 

    } 

    else { 

        productUpdate(Product); 

    } 

} 

 
The productUpdate  function is passed the product object, and you'll send that via an 

Ajax call using the verb PUT . This maps to the Put method you created in the controller. 

Just like you did in the POST Ajax call, change the type  property to PUT , set 

the contentType  to use JSON and serialize the Product object using JSON.stringify . 

 

  
function productUpdate(product) { 

  $.ajax({ 

    url: "/api/Product", 

    type: 'PUT', 

    contentType:  

       "application/json;charset=utf-8", 

    data: JSON.stringify(product), 

    success: function (product) { 

      productUpdateSuccess(product); 

    }, 

    error: function (request, message, error) { 

      handleException(request, message, error); 

    } 

  }); 

} 

 
If the update is successful, a function called productUpdateSuccess  is called and 

passed the updated product object. The productUpdateSuccess  function passes the 

product object on to another function named productUpdateInTable . I know that you 

could just call the productUpdateInTable  function directly from the Ajax call, but I like 

to keep my pattern of naming functions consistent. Besides, in the future, you may want 
to do some additional coding within the productUpdateSuccess  function. 

 

  
function productUpdateSuccess(product) { 

  productUpdateInTable(product); 

} 



Update the Modified Data in the HTML Table 

The productUpdateInTable  function locates the row in the HTML table just updated. 

Once the row is located, a new table row is built using 
the productBuildTableRow  function that you created earlier. This newly created row is 

inserted immediately after the row of the original data. The original row is then removed 
from the table. All of this happens so fast that the user doesn't even realize when this 
add and delete occur. Another option is to clear the whole table and reload all of the 
data by calling the productList function. 
 

  
function productUpdateInTable(product) { 

    // Find Product in <table> 

    var row = $("#productTable button[data-id='" +  

        product.ProductId + "']").parents("tr")[0]; 

     

    // Add changed product to table 

    $(row).after(productBuildTableRow(product)); 

     

    // Remove original product 

    $(row).remove(); 

    formClear();  // Clear form fields 

     

    // Change Update Button Text 

    $("#updateButton").text("Add"); 

} 

 

Delete (DELETE) a Product 

The last HTTP verb you need to learn is DELETE . Once again, you need to modify 

the ProductController . Locate the Delete  method and modify it by adding 

the [HttpDelete]  attribute, and changing the return value to IHttpActionResult . 

 

  
[HttpDelete()] 

public IHttpActionResult Delete(int id)  

{ 

    IHttpActionResult ret = null; 

    if (DeleteProduct(id))  

    { 

        ret = Ok(true); 

    } 

    else  

    { 

        ret = NotFound(); 



    } 

    return ret; 

} 

 
The DeleteProduct  method is a mock to simulate deleting a product from a table. Just 

create a dummy method that returns true  for now. You can switch this method to 

return false  to test what happens if the delete fails. 

 

  
private bool DeleteProduct(int id)  

{ 

    return true; 

} 

 

Add a Delete Button 

Each row in your table should have a Delete button (Figure 1). Add that button now by 
adding a new <th>  within the <thead>  tag. 

 

  
<th>Delete</th> 

 
Modify the productBuildTableRow  function and add the following code immediately 

before the closing table row tag (</tr> ). 

 

  
"<td>" + 

  "<button type='button' " + 

     "onclick='productDelete(this);' " + 

     "class='btn btn-default' " + 

     "data-id='" + product.ProductId + "'>" + 

     "<span class='glyphicon glyphicon-remove' />" + 

  "</button>" + 

"</td>" + 

 

Delete a Product Using Ajax 

In the code that builds the delete button, the onClick  event calls a function 

named productDelete . Pass this  to the productDelete  function so that it can use this 

reference to retrieve the value of the product ID contained in the data-id  attribute. The 

Ajax call sets the URL to include the ID of product to delete and sets the type property 



to DELETE . Upon successfully deleting a product, remove the complete row from the 

HTML by finding the <tr>  tag that contains the current delete button and calling 

the remove()  method on that table row. 

 

  
function productDelete(ctl) { 

    var id = $(ctl).data("id"); 

             

    $.ajax({ 

        url: "/api/Product/" + id, 

        type: 'DELETE', 

        success: function (product) { 

            $(ctl).parents("tr").remove(); 

        }, 

        error: function (request, message, error) { 

            handleException(request, message, error); 

        } 

    }); 

} 

 

Summary 
In this article, you learned the various HTTP verbs GET , POST , PUT , and DELETE  and how 

to use them to create add, edit, delete, and list Web pages. What's nice about combining 
the Web API with pure HTML is that you're not performing full postbacks to the server, 
rebuilding the whole page, and then resending the whole page back down to the client 
browser. This comes in very handy on mobile devices where your user may be on a 
limited data connection through a service provider. The less data you send across, the 
fewer minutes and gigs of data you use on mobile phone plans. In the next article, you'll 
see some methods for handling validation and error messages. 
 

Courtesy: https://www.codemag.com/article/1601031/CRUD-in-HTML-JavaScript-and-jQuery-Using-the-

Web-API  

 

Modified: 2021.10.06.8.10.PM 

Dököll Solutions, Inc 

https://www.codemag.com/article/1601031/CRUD-in-HTML-JavaScript-and-jQuery-Using-the-Web-API
https://www.codemag.com/article/1601031/CRUD-in-HTML-JavaScript-and-jQuery-Using-the-Web-API

